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Density matrix renormalization group

DMRG is a numerical technique for finding approximate ground states and
low lying excited states of low dimensional strongly correlated quantum
models

@ Roots in Wilson's RG
@ Introduced by White in 1992

o Nowadays it is the most efficient method for treating 1D systems with
applications in many fields
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Real space renormalization group

Problem:

@ Treating large quantum systems with limited memory
Solution:

@ Break the system into blocks which can be diagonalized

@ Choose the lowest lying eigenstates as an effective basis for the block
@ Join two blocks
@ Repeat

step 1 000 00 00 00

step 2 M B H B, H B, H B E BB, — B,

step 3 F B, H B, H{: ByB, — By

_H Bs H— and so on...

Figure: Formation of blocks in RSRG. [Till D Kiihner. Dynamics with the Density-Matrix Renormalization
Group (1990). PhD thesis]
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compound block AA

Breakdown of RSRG: block A block A
@ Lowest lying state of AA cannot be
approximated properly using the lowest
lying states of A

@ This error is a consequence of the

truncation procedure
Figure: Block eigenstates for a

. . tight binding model describing a
Workaround: using different boundary siigle partic?e hopping on a &

Cond|t|0ns - Only for non_lnteraCtlng SYStems chain. [Ulrich Schollwéck. The density-matrix
renormalization group. Reviews of Modern Physics,

77(1):259, 2005.]
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DMRG

In order to correct the errors of RSRG:

© Embed the system in an environment

@ Change the way we choose the states we keep:

1) = [9) || = min

= Satisfied when we truncate the states with the smallest
density-matrix weight

Density matrix

pin = Wi
J

) = > ;i ¥ij li) |j) eigenstate of the block Hamiltonian
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Infinite system DMRG

Start with block A
Add a site to form system block Ae [ 1 |

Reflect to obtain the environment block e e

oA | 100l |
Form the superblock A e e A’ ! suierbick !
Calculate the ground state |¢)) of the [system | environment]
SuperblOCk new block S new block E
Form the density matrix p = [1) (¢ | |

D|agona.I|ze the dens.|ty matrix and keep Figure: Infinite system DMRG
the m eigenstates with the largest blocks.  [Ulrich Schollwsck. The
eigenva I ues density-matrix renormalization group. Reviews of
A < Ae in the truncated basis, go to ~ Modem Physics 77(1):259, 2005]

step 2

Spectral weight of bosonic excitations near Mott insulator-superfluid transition in 1D December 2, 2014 7/21



Finite system DMRG

@ By constantly increasing the size of the superblock, truncation is
never made in terms of the correct target state

o Finite size DMRG changes the size of the system and the
environment while keeping the superblock size constant

e block S 2 sites block E
end of infinite
DMRG | [e]e] |
environment
growth [ (retrieved)  JO O[=+—— |
system size
minimal |:|O O| |
ng:\?t: (—=]o]| (retrieved) |
end of finite
DVRG L o] |

Figure: Finite system DMRG sweep. [Ulrich Schollwéck. The density-matrix renormalization group.
Reviews of Modern Physics, 77(1):259, 2005.]
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build up pliase

step 1 B, <
step 2 B, ¢

step 3 B, <

step 4 B, <

step

step 6

step T D <

Finite size DMRG wps By
@ Use infinite system DMRG et e

algorithm to build up the system | """
@ Use finite system DMRG sweeps step 11

to tune it step 12

step 13 B«

step 14 By«

step 15 By <

step 16 B <

Figure: Finite size DMRG. [mill D Kiihner.
Dynamics with the Density-Matrix Renormalization Group

(1990). PhD thesis]
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Bose-Hubbard model

System of bosons on a lattice chain having repulsive on-site interaction,
and lowering energy by hopping to neighburing sites on the lattice

Bose-Hubbard Hamiltonian in 1D

H= =t 326l + b bli) + 5 3 Al = 1) = 3

1
2

hopping term interaction term

b:-r/bi - bosonic creation/annihilaton operators on site i
nj = b;rb,- - number of particles on site i

t - hopping matrix element

U - on-site Coulomb repulsion

w1 - chemical potential
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Phases of the Bose-Hubbard model

Competition between
o the hopping term, which tries to delocalize the system

@ the on-site interaction term, which tries to localize the particles
and reduce the fluctuations

gives rise to two distinct phases:

Superfluid phase: single-particle wavefunctions
spread out over the entire lattice, non-integer filling

Mott insulator phase: localized wavefunctions

with a fixed number of atoms per site, integer filling
Figure: Superfluid-Mott

insulator transition

[greiner.physics.harvard.edu]
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Phase diagram of the 1D Bose-Hubbard model
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Figure: Phase diagram of the Bose-Hubbard model. [Till D Kiihner and H Monien. Phases of the
one-dimensional Bose-Hubbard model. Physical Review B, 58(22):R14741, 1998.]
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Treating the Bose-Hubbard model with DMRG

Cut-off number of particles per site introduced

o
@ Ground state particle number is equal to the number of sites
@ Both infinite and finite size algorithms are used

o

Increased accuracy by targeting multiple states

n
p= Z wipi
i=1

Address operator representation

Spectral weight of bosonic excitations near Mott insulator-superfluid transition in 1D December 2, 2014 13 /21



Representation of operators

Make use of the fact that the particle number is conserved
= Operators can be broken into sectors

[ ]

H,

H,

B
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Representation of operators in the wavevector space

1
Ag = N Z Ap cos(gxn)f(xn)

f(xn) is the filtering function
L
N=>3._1f(xn)

08+ -
0.6 B
[ —— Parzen

04l | —— Gaussian

Figure: Parzen filter
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Phase diagram of the 1D Bose-Hubbard model

Obtaining the phase diagram:

@ Three states are targeted: ground state g and ground state with an
added particle p or hole h

tp = Ep — Eg

Hh = Eg — Ep
@ Critical point expected around t./U = 0.27

Parameters used:

o L =128

Q@ Nmax = 4

® Nstates = 16
® Noweeps = 2
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Figure: Phase diagram of the Bose-Hubbard model
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Spectral weight of the bosonic excitations

Calculated value:
Z(q) = | (1/b}|0) |
Expected result:
@ High values in the Mott and superfluid phase

@ Drop around the critical point

Parameters:
o L =128
@ Nmax = 3
® Nstates = 8
@ Nsyeeps = 2
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Figure: Spectral weight of the bosonic excitations
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Summary and outlook

@ DMRG - an effective method for treating low dimensional strongly
correlated systems

@ Bose Hubbard model - a simple bosonic model, realized in
experiments with ultracold atoms

@ Applying DMRG to the system, we are able to see the superfluid-Mott
insulator transition

@ Improve the code to obtain better accuracy and resolution of the
results
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Thank you for your attention
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