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Density matrix renormalization group

DMRG is a numerical technique for finding approximate ground states and
low lying excited states of low dimensional strongly correlated quantum
models

Roots in Wilson’s RG

Introduced by White in 1992

Nowadays it is the most efficient method for treating 1D systems with
applications in many fields
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Real space renormalization group

Problem:

Treating large quantum systems with limited memory

Solution:

Break the system into blocks which can be diagonalized

Choose the lowest lying eigenstates as an effective basis for the block

Join two blocks

Repeat

Figure: Formation of blocks in RSRG. [Till D Kühner. Dynamics with the Density-Matrix Renormalization

Group (1990). PhD thesis]
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Breakdown of RSRG:

Lowest lying state of AA cannot be
approximated properly using the lowest
lying states of A

This error is a consequence of the
truncation procedure

Workaround: using different boundary
conditions - only for non-interacting systems

Figure: Block eigenstates for a
tight binding model describing a
single particle hopping on a
chain. [Ulrich Schollwöck. The density-matrix

renormalization group. Reviews of Modern Physics,

77(1):259, 2005.]
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DMRG

In order to correct the errors of RSRG:

1 Embed the system in an environment

2 Change the way we choose the states we keep:

‖ |ψ〉 − |ψ̃〉 ‖ → min

⇒ Satisfied when we truncate the states with the smallest
density-matrix weight

Density matrix

ρii ′ =
∑
j

ψ∗ijψi ′j

|ψ〉 =
∑

ij ψij |i〉 |j〉 eigenstate of the block Hamiltonian
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Infinite system DMRG

1 Start with block A

2 Add a site to form system block A•
3 Reflect to obtain the environment block
•A′

4 Form the superblock A • •A′

5 Calculate the ground state |ψ〉 of the
superblock

6 Form the density matrix ρ = |ψ〉 〈ψ|
7 Diagonalize the density matrix and keep

the m eigenstates with the largest
eigenvalues

8 A← A • in the truncated basis, go to
step 2

Figure: Infinite system DMRG
blocks. [Ulrich Schollwöck. The

density-matrix renormalization group. Reviews of

Modern Physics, 77(1):259, 2005.]
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Finite system DMRG

By constantly increasing the size of the superblock, truncation is
never made in terms of the correct target state

Finite size DMRG changes the size of the system and the
environment while keeping the superblock size constant

Figure: Finite system DMRG sweep. [Ulrich Schollwöck. The density-matrix renormalization group.

Reviews of Modern Physics, 77(1):259, 2005.]
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Finite size DMRG
1 Use infinite system DMRG

algorithm to build up the system

2 Use finite system DMRG sweeps
to tune it

Figure: Finite size DMRG. [Till D Kühner.

Dynamics with the Density-Matrix Renormalization Group

(1990). PhD thesis]
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Bose-Hubbard model

System of bosons on a lattice chain having repulsive on-site interaction,
and lowering energy by hopping to neighburing sites on the lattice

Bose-Hubbard Hamiltonian in 1D

H = −t
∑
i

(b†i bi+1 + bi b
†
i+1)︸ ︷︷ ︸

hopping term

+
U

2

∑
i

n̂i (n̂i − 1)︸ ︷︷ ︸
interaction term

−µ
∑
i

n̂i

b†i /bi - bosonic creation/annihilaton operators on site i

ni = b†i bi - number of particles on site i
t - hopping matrix element
U - on-site Coulomb repulsion
µ - chemical potential
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Phases of the Bose-Hubbard model

Competition between

the hopping term, which tries to delocalize the system

the on-site interaction term, which tries to localize the particles
and reduce the fluctuations

gives rise to two distinct phases:

Superfluid phase: single-particle wavefunctions
spread out over the entire lattice, non-integer filling

Mott insulator phase: localized wavefunctions
with a fixed number of atoms per site, integer filling

Figure: Superfluid-Mott
insulator transition
[greiner.physics.harvard.edu]
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Phase diagram of the 1D Bose-Hubbard model

Figure: Phase diagram of the Bose-Hubbard model. [Till D Kühner and H Monien. Phases of the

one-dimensional Bose-Hubbard model. Physical Review B, 58(22):R14741, 1998.]
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Treating the Bose-Hubbard model with DMRG

Cut-off number of particles per site introduced

Ground state particle number is equal to the number of sites

Both infinite and finite size algorithms are used

Increased accuracy by targeting multiple states

ρ =
n∑

i=1

ωiρi

Address operator representation
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Representation of operators

Make use of the fact that the particle number is conserved
⇒ Operators can be broken into sectors
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Representation of operators in the wavevector space

Aq =
1

N

∑
n

An cos(qxn)f (xn)

f (xn) is the filtering function
N =

∑L
n=1 f (xn)

Figure: Parzen filter
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Phase diagram of the 1D Bose-Hubbard model

Obtaining the phase diagram:

Three states are targeted: ground state g and ground state with an
added particle p or hole h

µp = Ep − Eg

µh = Eg − Eh

Critical point expected around tc/U = 0.27

Parameters used:

L = 128

nmax = 4

nstates = 16

nsweeps = 2
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Figure: Phase diagram of the Bose-Hubbard model
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Spectral weight of the bosonic excitations

Calculated value:
Z (q) = | 〈1|b†q|0〉 |2

Expected result:

High values in the Mott and superfluid phase

Drop around the critical point

Parameters:

L = 128

nmax = 3

nstates = 8

nsweeps = 2
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Figure: Spectral weight of the bosonic excitations
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Summary and outlook

DMRG - an effective method for treating low dimensional strongly
correlated systems

Bose Hubbard model - a simple bosonic model, realized in
experiments with ultracold atoms

Applying DMRG to the system, we are able to see the superfluid-Mott
insulator transition

Improve the code to obtain better accuracy and resolution of the
results
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Thank you for your attention
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